Flowers in Mathematica
Author
János Karsai
Title
Flowers in Mathematica
Description
These files include flowers developed in Mathematica, including the official logo used for the International Mathematica Symposium, Maastricht, June 20-24, 2008.
Category
Educational Materials
Keywords
URL
http://www.notebookarchive.org/2018-10-10qzu3x/
DOI
https://notebookarchive.org/2018-10-10qzu3x
Date Added
2018-10-02
Date Last Modified
2018-10-02
File Size
3.49 megabytes
Supplements
Rights
Redistribution rights reserved
This notebook has not been updated since 2015.
Download
Open in Wolfram Cloud
GIve a name to it :)
GIve a name to it :)
In[]:=
Clear[c,r,jazmin];
r[u_,v_,c_]=v^(1.6) (0.+(0.01+Abs[Sin[c u/2]] )^(1/3));
jazmin[u_,v_,c_]=Evaluate[
{r[u,v,c] Sin[u]*Cos[v],
r[u,v,c] Cos[u]*Cos[v],
3.5 Abs[Cos[ v]]^(0.7) (2+Sin[c u/2]^2)
}];
r[u_,v_,c_]=v^(1.6) (0.+(0.01+Abs[Sin[c u/2]] )^(1/3));
jazmin[u_,v_,c_]=Evaluate[
{r[u,v,c] Sin[u]*Cos[v],
r[u,v,c] Cos[u]*Cos[v],
3.5 Abs[Cos[ v]]^(0.7) (2+Sin[c u/2]^2)
}];
In[]:=
ParametricPlot3D[
Evaluate[jazmin[u,v,5]], {u,-Pi,Pi},{v,0, 3.4},
PlotPoints->50,BoxRatios->Automatic,
PlotRange->All,Boxed->False,Axes->None,Mesh->None,ColorFunction->(ColorData["SunsetColors"][0.9(1-0.9#5)]&)]
Evaluate[jazmin[u,v,5]], {u,-Pi,Pi},{v,0, 3.4},
PlotPoints->50,BoxRatios->Automatic,
PlotRange->All,Boxed->False,Axes->None,Mesh->None,ColorFunction->(ColorData["SunsetColors"][0.9(1-0.9#5)]&)]
Out[]=
GIve a name to it :)
GIve a name to it :)
In[]:=
Clear[c,r,jazmin];
r[u_,v_,c_]=v^(1.6) (0.+(0.01+Abs[Sin[c u/2]] )^(1/3));
jazmin[u_,v_,c_]=Evaluate[
{r[u,v,c] Sin[u]*Cos[v],
r[u,v,c] Cos[u]*Cos[v],
3.5 Abs[Cos[ v]]^(0.7) (2+Sin[c u/2]^2)
}];
r[u_,v_,c_]=v^(1.6) (0.+(0.01+Abs[Sin[c u/2]] )^(1/3));
jazmin[u_,v_,c_]=Evaluate[
{r[u,v,c] Sin[u]*Cos[v],
r[u,v,c] Cos[u]*Cos[v],
3.5 Abs[Cos[ v]]^(0.7) (2+Sin[c u/2]^2)
}];
In[]:=
ParametricPlot3D[
Evaluate[jazmin[u,v,9]], {u,-Pi,Pi},{v,0, 3.4},
PlotPoints->50,BoxRatios->Automatic,
PlotRange->All,Boxed->False,Axes->None,Mesh->None,ColorFunction->(ColorData["SunsetColors"][0.9(1-0.9#5)]&)]
Evaluate[jazmin[u,v,9]], {u,-Pi,Pi},{v,0, 3.4},
PlotPoints->50,BoxRatios->Automatic,
PlotRange->All,Boxed->False,Axes->None,Mesh->None,ColorFunction->(ColorData["SunsetColors"][0.9(1-0.9#5)]&)]
Out[]=
"Sting-flower"
"Sting-flower"
In[]:=
Clear[c,r,jazmin];
r[u_,v_,c_]=v^(1.5) (0.+(0.01+Abs[Sin[c u/2]] )^(1/2));
jazmin[u_,v_,c_]=Evaluate[
{r[u,v,c] Sin[u]*Cos[v],
r[u,v,c] Cos[u]*Cos[v],
Abs[Cos[ v]]^(0.7) (2+Sin[c u/2]^2) (1+1/(0.5+v)^0.7)
}];
r[u_,v_,c_]=v^(1.5) (0.+(0.01+Abs[Sin[c u/2]] )^(1/2));
jazmin[u_,v_,c_]=Evaluate[
{r[u,v,c] Sin[u]*Cos[v],
r[u,v,c] Cos[u]*Cos[v],
Abs[Cos[ v]]^(0.7) (2+Sin[c u/2]^2) (1+1/(0.5+v)^0.7)
}];
In[]:=
ParametricPlot3D[
Evaluate[jazmin[u,v,7]], {u,-Pi,Pi},{v,0, Pi 1.1},
PlotPoints->30,BoxRatios->Automatic,
PlotRange->All,Boxed->False,Axes->None,Mesh->None
,ColorFunction->(ColorData["SolarColors"][1.5(#5^1.3)]&)]
Evaluate[jazmin[u,v,7]], {u,-Pi,Pi},{v,0, Pi 1.1},
PlotPoints->30,BoxRatios->Automatic,
PlotRange->All,Boxed->False,Axes->None,Mesh->None
,ColorFunction->(ColorData["SolarColors"][1.5(#5^1.3)]&)]
Out[]=
Cite this as: János Karsai, "Flowers in Mathematica" from the Notebook Archive (2015), https://notebookarchive.org/2018-10-10qzu3x
Download